Alaska High Variable Renewable Penetration Microgrids
Mariko Shirazi
Research Professor, Power Systems Integration, Alaska Center for Energy and Power

IPS Connect 2018
Lahaina, HI Oct. 17, 2018
Adapted from:
Ben Kroposki, NREL

References:

Published Concept Paper in 2016:
Achieving a 100% Renewable Grid

As solar and wind costs decrease – these penetration levels are economical.
Alaska wind-diesel systems

- ~2 dozen wind-diesel systems
 - 18 kW - 3 MW average load
 - ~6 30-40% average wind penetration
- Three operational diesel-off systems:
 - St. Paul Poss Camp (1999)
 - 70 kW average load
 - 34% (55%) average penetration
 - Synchronous condenser
 - Thermal storage
 - Kongiganak and Kwigillingok (2017/20)
 - 117 / 150 kW average load
 - 29% (before BESS - now?) / 34% avg. pen.
 - Li-ion BESS with Inverter
 - Electric thermal stoves - distributed heat
Some history

• Metlakatla (1997, 2008)
 • 3.5 MW peak load at time of installation (sawmill)
 • 5 MW hydro, 3.3 MW diesel now standby only
 • 1 MW / 1.4 MWh Lead Acid battery
 • Frequency responsive regulating reserve

• Kotzebue (1997, 2105)
 • 2 MW average load / 3 MW peak load
 • 2.94 MW wind, 20% average penetration, 80-90% max instantaneous penetration
 • 1.25 MW / 950 kWh lithium ion BESS
 • Frequency responsive reserve - wind plant support

• Wales (2002 - Non-operational)
 • 70% penetration (design)
 • Ni-CAD BESS with rotary converter
 • Electric boiler
 • Lessons learned
Challenges and opportunities

• Variable and uncertain resource
 • Regulating reserve
 • Contingency reserve

• Converter-dominated power systems
 • Stability
 • Low to zero inertia
 • Frequency is no longer a fundamental indicator of power balance
 • Converter control algorithms play leading role
 • Fault identification and clearing, protection coordination
 • Motor loads
 • Black start
 • Transient and dynamic modeling

• Replacing lost heat to heat recovery loads
• Emissions regulations
• DC interties
ACEP PSI Lab

- Diesel generators
 - 320 kW Caterpillar C-15, Woodward easYgen
 - 125 kW Detroit Diesel, Woodward easYgen
- 100 kW PV simulator
- 100 kW wind turbine simulator
- Battery energy storage system
 - 600 kW / 270 kWh lead-acid battery
 - 313 kVA ABB PCS100 Inverter
- Load banks
 - Two 250 kW / 188 kVAR RL load banks
 - 5 kW / 3.75 kVAR steps
 - 55 kW resistive load bank
- Fault emulator
 - 3-phase, 480 V, up to 10 kA faults
 - Faults: 3-phase, single l-l, single l-g
- Future: line impedance simulation
Three-phase fault emulator
Initial fault tests:
Bolted 3-ph fault with BESS, 40 A type K fuse
Characterizing system dynamics:

Load Step Response Example
Effect of ramp rate on diesel fuel efficiency

Steady state fuel curves

190 kW
Tier 4

320 kW
Tier 3

457 kW
Tier 2
Thank you!

Mariko Shirazi
Research Professor, Power Systems Integration Program
Alaska Center for Energy and Power
Institute of Northern Engineering
University of Alaska Fairbanks
mshirazi@alaska.edu
+1 (907) 474 5402
http://acep.uaf.edu

Partners:
US Department of Energy
US Department of the Interior
US Denali Commission
US Economic Development Administration
US Office of Naval Research
State of Alaska
Alaska Energy Authority
Alaska Village Electric Cooperative
Alaska Power and Telephone
Cordova Electric Cooperative
City of Cordova
Nome Joint Utility Systems
Kokhanok Village Council
Lake and Peninsula Borough
City of Galena
Power and Water Corporation, Darwin, Australia
Idaho National Laboratory
National Renewable Energy Laboratory
Sandia National Laboratory
Lawrence Berkley National Laboratory
Pacific Northwest National Laboratory
Technical University Darmstadt, Germany
ABB
Shell
Huntley and Associates
Hatch Associates Consultants
Oceana Energy LLC
Intergrid
Intelligent Energy Systems