Beyond JUMPSmartMaui

October 19th, 2018

Mr. Fumitoshi Emura
Hitachi, Ltd

Dr. Yuichi Kado
Kyoto Institute of Technology
Agenda

1. EV Infrastructure Installed by JUMPSmartMaui
2. Demonstration Result Overview
3. Beyond JUMPSmartMaui
4. Triple-Active-Bridge (TAB) Converter for
5. Autonomously Distributed Power Network
1. EV Infrastructure Installed by JUMPSmartMaui
1. EV Infrastructure Installed by JUMPSmartMaui

1-1. Hawaii’s Environment for Vehicle-Grid Integration

- 100% renewables in **electricity generation** by 2045
 - Action plans in Hawaiian Electric’s Power Supply Improvement Plans (December, 2016)
 - Maximize distributed energy resources
 - Make high use of demand response programs

- 100% renewables in **ground transportation** by 2045
 - Ranks second in the nation behind CA in the number of EVs registered per capita
 - 4 county mayors in Hawaii signed proclamation in December
 - Honolulu and Maui to transition all of their fleet vehicles to clean energy by 2035
Deployed 80 V2H chargers which demonstrated discharge, in response to grid signals, over 6–9pm peak period thereby helping manage distribution system loads and frequency events.

The project was part of major broader smart grid project seeking to integrate renewable energy, electric vehicles, energy storage, and controllable loads in Maui, Hawaii.

SERVICES
- **Service Focus**
 - Peak reduction
 - Frequency response
- **Targeted Action**
 - Backoffice control signal
- **Response Speed**
 - < 4 secs
- **Duration of Service**
 - 3 hours (6–9pm)
- **Status**
 - Proven

OPERATIONAL SNAPSHOT
- **User Behaviour**
 - 80 families using the vehicles “normally”, typically plugging in on return from work.
 - This meant limited diversity and restricted when V2G could be provided.
 - Families often used other DC fast chargers, which meant only plugged in on average every other day.
 - Trial ran in 2013–2014 with V1G which made easier to introduce V2G as good data on driving patterns.

AVAILABILITY & PERFORMANCE
- **Battery Usage for V2G**
 - 30–95%

ARCHITECTURE
- Energy control via autonomous, decentralized system. Hitachi developed integrated DMS with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV’s connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

OPERATIONAL SNAPSHOT
- **User Behaviour**
 - 80 families using the vehicles “normally”, typically plugging in on return from work. This meant limited diversity and restricted when V2G could be provided.
 - Families often used other DC fast chargers, which meant only plugged in on average every other day.
 - Trial ran in 2013–2014 with V1G which made easier to introduce V2G as good data on driving patterns.

ARCHITECTURE
- Energy control via autonomous, decentralized system. Hitachi developed integrated DMS with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV’s connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

AVAILABILITY & PERFORMANCE
- **Battery Usage for V2G**
 - 30–95%

ARCHITECTURE
- Energy control via autonomous, decentralized system. Hitachi developed integrated DMS with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV’s connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

AVAILABILITY & PERFORMANCE
- **Battery Usage for V2G**
 - 30–95%

ARCHITECTURE
- Energy control via autonomous, decentralized system. Hitachi developed integrated DMS with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV’s connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

AVAILABILITY & PERFORMANCE
- **Battery Usage for V2G**
 - 30–95%

ARCHITECTURE
- Energy control via autonomous, decentralized system. Hitachi developed integrated DMS with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV’s connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

AVAILABILITY & PERFORMANCE
- **Battery Usage for V2G**
 - 30–95%

ARCHITECTURE
- Energy control via autonomous, decentralized system. Hitachi developed integrated DMS with localised autonomous DMS. EV charging utilised these DMS with EV Control Centre to create a charging schedule so as to fill up the gap between the estimated power generated by renewable energy and load of the next day. It then takes account of each EV’s connection status to the normal charger and the desired charge end time to instruct the charge start time to each EV. ChaDeMo protocol used.

AVAILABILITY & PERFORMANCE
- **Battery Usage for V2G**
 - 30–95%
1. EV Infrastructure Installed by JUMPSmartMaui

1-2. JUMPSmartMaui Project (2011~2016)

- Install / operate infrastructure to help the Island transition to clean energy transportation
- Help electrical grid introduce more renewables by utilizing distributed energy resources especially electric vehicles (EVs)

*The project was supported by Japanese government (METI / NEDO)
1. EV Infrastructure Installed by JUMPSmartMaui

1-3. Installed DC Fast Charging Stations

- **13 stations with 44 ports** were installed in JUMPSmartMaui project
- They are **now in operation on commercial basis**

EV charger ports in Maui County (Sep., 2018)

- 80 Public Level 2 Chargers
- 44 DCFC (Hitachi)
- *2 DCFC (Maui Electric)

*1) Hawaii Energy Facts & Figures (June, 2018) / State Energy Office
*2) based on HECO website as of Sep., 2018
Currently in commercial operation with >300 users
Even DCFC users charge at home often

Registered EVs in Maui Island

Total 998 (as of Aug., 2018)

Source: Hawaii State Energy Office

Q. Where do you most often charge your EV?
(June 2017)
1-4. Charging Behavior at DC Fast Charging Stations (cont’d)

- Usage peaks at 5~6pm in weekdays
- Unless DCFC ports are enough, increase in charging at home after 6pm is expected (**inconvenient for the grid**)
Hitachi installed its bi-directional charger (EV-PCS) at 80 real residents as a part of EV infrastructure in Maui.

Features of the bi-directional charger

- Charging and discharging in CHAdeMO protocol at 6kW
- Remotely controlled by IEEE2030.5 (SEP2.0) interface
- Real and reactive power capability
- Vehicle-to-Load available when disconnected from the grid
1. EV Infrastructure Installed by JUMPSmartMaui

1-6. Demand Response Programs demonstrated

- Hitachi has demonstrated various DR programs as shown below

<table>
<thead>
<tr>
<th>Program</th>
<th>Forecast Meter Data</th>
<th>Notification</th>
<th>Communication</th>
<th>Response Speed</th>
<th>Accuracy</th>
<th>Duration</th>
<th>Annual limitation</th>
<th>Number of event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regulating Reserve</td>
<td>Near Real time</td>
<td>Continuously</td>
<td>DNP3 to head-end</td>
<td>4 sec</td>
<td>Less than 0.1MW</td>
<td>30 min - 2 hrs</td>
<td>182 hrs</td>
<td>max 2/day</td>
</tr>
<tr>
<td>2 Capacity</td>
<td>15 min or Less than 15 min</td>
<td>One day before</td>
<td>Internet (5 minutes) VTN-VEN 2way</td>
<td>1 hr</td>
<td>10% of forecast</td>
<td>Minimum 4 hrs</td>
<td>N/A (Daily)</td>
<td>N/A</td>
</tr>
<tr>
<td>3 10 min Reserve</td>
<td>5 min</td>
<td>Same time that event happen</td>
<td>Internet (5 minutes) VTN-VEN 2way</td>
<td>10 min</td>
<td>10% of forecast</td>
<td>Max 1 hr</td>
<td>100 hrs</td>
<td>max 2/day</td>
</tr>
<tr>
<td>5 FFR (Contingency Reserve)</td>
<td>15 min or Less than 15 min</td>
<td>Same time that event happen</td>
<td>Parameter setting, Performance confirmation (2way)</td>
<td>12 or 30 cycles</td>
<td>Set-point: ±0.02Hz</td>
<td>Max 10 min</td>
<td>25 max 2/day</td>
<td>Not Covered</td>
</tr>
</tbody>
</table>

= already demonstrated

© Hitachi, Ltd. 2018. All rights reserved.
2. Demonstration Result Overview
2. Demonstration Result Overview

2-1. Demonstrations Overview

Managed Charging (V1G)
- 200 houses participated with level-2 chargers
- Managed charging based on utility’s forecast and the participants’ needs

Vehicle-to-Grid (V2G)
- Additional 80 houses participated with Hitachi bi-directional charger
- Managed charging / discharging

Registered EVs in Maui

© Hitachi, Ltd. 2018. All rights reserved.
Renewable energy percentage in Maui was already *34% in 2017

*) proportion to total electricity sales (kWh)

- Curtailed renewables in 2016 was equivalent to full charging of 1,000 EVs with 40kWh battery every day
- Highly populated customer-sited solar generation causes issues on grid operations
2. Demonstration Result Overview

2-2. Electrical Grid in Maui (cont’d)

EVs can both cause and mitigate issues

- Loads in peak period (7~8pm) are expected to shift either during daytime or midnight

Source: Maui Electric
2. Demonstration Result Overview

2-3. Natural Charging Behavior at Home

- Charging in peak at 7 ~ 8pm, when grid demand is also in peak
- Few charging at midnight, when grid demand gets minimum in a day
2-4. Managed Charging (V1G) Results

- **Scheduled charging** based on hourly grid needs and requirement of each participant (e.g. to be fully charged by 4am) **shifted charging peak to 3 hours later**

Charging peaked 3 hours later and continued to midnight
2-5. State-of-Charge (SoC)

- SoC of the EVs gets minimum ~7pm but still half of them have **70% or more left**
- Enough to support grid’s peak demand period (and then to be fully charged afterwards)
2. Demonstration Result Overview

2-6. Managed Charging / Discharging (V2G) Results

- Charging shifted to midnight (similar to V1G results)
- Also, **discharging** occurred during system load peak period

![Graph showing managed charging and discharging results over a 24-hour period with shifted charging and avoided charging highlighted.]

- **Shifted charging**:
 - Charging before the project started
 - Charging after the project started

- **Discharging**:
 - Occurred during system load peak period

- **Avoided charging**:
 - Highlighted in the graph to illustrate energy savings.
2-7. Communication with Community

- Using EVs as energy resources is quite new for users and can be complicated
- Having EV charging infrastructure and interactions with grid are local interests
- Information sessions have been helpful to receive acceptance from community
Charging behavior at home can impact on grid operation

- Natural charging peak at home overlaps system peak.

Charging EVs can be controlled without losing user’s convenience

- Charging EVs during period with fewer system load is beneficial both for utilities and users.
- EVs avoided being charged during system peak can still be charged enough by morning.

Many EVs at home have enough energy left for power loads during the peak time

- EVs can not only be avoided being charged during system peak and also export power to home then.
3. Beyond JUMPSmartMaui
3. Beyond JUMPSmartMaui

3-1. Validated technologies in V2X space (Summary)

- Our experiences in different projects/demonstrators have proven the validity of individual technologies in V2X space
- The key going forward is how we connect and mobilise these technologies on a platform

Examples of technological categories/functions proven in our projects

<table>
<thead>
<tr>
<th>Categories</th>
<th>Functions</th>
<th>Power (kWh)</th>
<th>Voltage control (reactive power)</th>
<th>Distribution grid congestion mgmt</th>
<th>Power (kWh)</th>
<th>V2B (kWh)</th>
<th>EV mgmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulating power (∆kW)</td>
<td>Frequency regulation</td>
<td>Power supply</td>
<td>Grid stabilization</td>
<td>Optimization of grid capacity</td>
<td>Surplus energy absorption (PV etc)</td>
<td>Load leveling Peak cut/shift</td>
<td>SOC mgmt</td>
</tr>
<tr>
<td>Power supply</td>
<td>Power supply</td>
<td>Grid stabilization</td>
<td>Optimization of grid capacity</td>
<td>Surplus energy absorption (PV etc)</td>
<td>Load leveling Peak cut/shift</td>
<td>SOC mgmt</td>
<td>CPO functions</td>
</tr>
</tbody>
</table>
3. Beyond JUMPSmartMaui

3-2. Toward Commercial Demand Response Programs

- Hitachi aims to apply technologies acquired and lessons learned in the demonstration to the commercial demand response programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Forecast•Meter Data</th>
<th>Notification</th>
<th>Communication</th>
<th>Response Speed</th>
<th>Accuracy</th>
<th>Duration</th>
<th>Annual limitation</th>
<th>Number of event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regulating Reserve</td>
<td>Near Real time</td>
<td>Continuously</td>
<td>DNP3 to head-end</td>
<td>4 sec</td>
<td>Less than 0.1MW</td>
<td>30 min - 2 hrs</td>
<td>182 hrs</td>
<td>max 2/day</td>
</tr>
<tr>
<td>2 Capacity</td>
<td>15 min or Less than 15 min</td>
<td>One day before</td>
<td>Internet (5 minutes) VTN-VEN 2way</td>
<td>1 hr</td>
<td>10% of forecast</td>
<td>Minimum 4 hrs</td>
<td>N/A (Daily)</td>
<td>N/A</td>
</tr>
<tr>
<td>3 10 min Reserve</td>
<td>5 min</td>
<td>Same time that event happen</td>
<td>Internet (5 minutes) VTN-VEN 2way</td>
<td>10 min</td>
<td>10% of forecast</td>
<td>Max 1 hr</td>
<td>100 hrs</td>
<td>max 2/day</td>
</tr>
<tr>
<td>4 FFR (Contingency Reserve)</td>
<td>15 min or Less than 15 min</td>
<td>Same time that event happen</td>
<td>Parameter setting, Performance confirmation (2way)</td>
<td>12 or 30 cycles</td>
<td>Set-point: ±0.02Hz</td>
<td>Max 10 min</td>
<td>25</td>
<td>max 2/day</td>
</tr>
</tbody>
</table>

= to be addressed in the following slides

Not Covered
3. Beyond JUMPSmartMaui

3-3. Frequency Control Example

Demonstration in Maui by Hawaiian Electric (2017)

- 40 EV-PCSs used to evaluate performance for Regulating Reserve
- Chargers controlled according to AGC signal in several second interval
- Evaluated high (> .97) in PJM scoring

3. Beyond JUMPSmartMaui

3-4. Bi-directional Charger - Hybrid-PCS

- EV, PV and battery support with single PCS (power conditioning system)
- Efficient DC-DC EV charging from PV
- Commercially available now in North America, Europe and Japan

* Located at the Hakusanroku Campus of Kanazawa Institute of Technology
3. Beyond JUMPSmartMaui

3-5. Locating Mobile Energy Resources

EV Battery Energy Density
- Calculating potential EV battery energy at each area from EV related information (e.g. EV location, SOC)
- Display the level and amount of potential energy

Mesh colored display according to potential energy (Ranking can be displayed)

Sending information of charging stations to users inside the high potential energy area

Local Grid Status & Charge / Discharge Locations
- Send message/information of charge/discharge to all EV users inside the specific area
- Reservation & navigation of charge/discharge stations which have higher merits for users

Energy Mgmt. Company

1. **Display of station status**
 - High value area & stations
 - Low value area & stations

2. **Station reservation**
 - Time
 - Price
 - Point etc

Timely information of potential charge/discharge locations

Station ID: 45
Radius (m): 8,000
Battery: 70%

Charge/Discharge Locations

- Shopping Center
- Hotel
- Company Office
- Office
3. Beyond JUMPSmartMaui

3-6. EV Platforms

Distributed Energy Optimization

EV platform concept at the end of JSM

- Solution and Partners -

EV platform

Vehicle services

Fleet mgmt. Car share EV location map

Partner + HITACHI

BEMS

Office (EV Depot)

EV DEPOT

GW GW GW GW

Partner + HITACHI

Bldg. Mgmt.

System deployment/Maintenance

Location Info. Driving Info. SoC Info. …

Delivery Site etc.
3. Beyond JUMPSmartMaui

3-7. V2X Use Cases

1. **Vehicle to Building**
 - Energy cost reduction of building
 - Efficiency of EV fleet operation

2. **Public Charging**
 - Using as energy resource while parked lowers charging fee

3. **Workplace Charging**
 - Benefits of employer
 - Benefits of employee

4. **Grid Services**
 - Potential capacity of resources
 - Potential incentives to receive

5. **EV Car-sharing**
 - Efficiency of EV fleet operation
 - Energy resource while unused

6. **EV Energy Mapping**
 - Efficiency of EV fleet operation
 - Value for distribution grid

7. **Block Chain**
 - Enabler of new way of energy transaction

8. **Collaboration with Local Authority**
 - Electrification of Fleet
 - Fleet V2B to facilities
<table>
<thead>
<tr>
<th>#</th>
<th>Situation</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1 | Black-out | [6th Sep]
| | | 03:07: *Earthquake (magnitude 6.7) in Hokkaido* |
| | | 03:08: *Two(2) Power Plants shut down* |
| | | - These plants supply half of power demand |
| | | - Wind/Hydroelectric plants shut down due to frequency reduction |
| | | 03:25: *Blackout*
| | | 2,950K house’s’ power failure |
| 2 | Estimated Economic Loss*| *Total : $1,926M*
| | | - Includes economic loss in Public works facilities, Agriculture, Forestry and Fisheries industries, Tourism, Power outage damage |
| | | *Commerce & Industry: $1,198M* |
| | | *Disposed food in convenience stores etc.: $75M* |
| | | - due to refrigerator/freezer failure |
| 3 | Recovery of Power Supply | 6th Sep. 21:00 : 16% recovery(480K houses) |
| | | 8th Sep : 99% |
| | | 4th Oct. : 100% |

*Exchange rate: 1USD=110JPY
3. Beyond JUMPSmartMaui

3-8. Resilience Solutions

Resilience solutions can be achieved by leveraging EV/PHEV batteries and maximized its capabilities with single-phase and three-phase H-PCS.

Examples of H-PCS utilization

1. Achieving Business Continuity Plan (BCP) for convenience store, especially for the frozen foods by using EV/PHEV as backup power supply

2. Ensuring tower mansion residents during disaster by discharging EV to keep elevator operated

3. Securing required power for office and community by fleet electrification and workplace charging

4. During demonstration household had back-up electrical power by EV-PCS even though the black out brought by Hurricane in Maui.
Emergency backup power for main equipment

- Backup power solutions are required by convenience stores as a lifeline in a time of disaster to speedily provide emergency support.
- As there are single-phase and three-phase power equipment used in convenient stores, Business Continuity Planning (BCP) by leveraging single-phase and three-phase H-PCS to deliver electricity from EV/PHEV can be achieved.

【Backup power from single phase equipment】
Power supply for lighting, POS, computer used in the store

【Backup power from 3-phase equipment】
Power supply for chilled/frozen food, air conditioner, etc.

【Value as Business Continuity Planning ①】
- Provide security/comfort with lighting
- Continue settlement operation with POS
- Connect with headquarter

【Value as Business Continuity Planning ②】
- Cut loss of damaged frozen food
- Control room temperature
- Continue operation of other equipment
Emergency backup power for main equipment

- Backup power solutions are required by convenience stores as a lifeline in a time of disaster to speedily provide emergency support supplies to disaster-stricken areas.
- Secure the power to freezer at the time of disaster by discharging from EV/PHEV.

Normal

While there's power from the grid, convenient stores can be used as EV station by installation of H-PCS.

Disaster

While there's no power from the grid, backup power for main equipment, e.g., freezer, can be provided by discharging EV.
Elevator operated by discharging EV/PHEV

- Ensure safety and comfort to tower mansion residents at the time of blackout/disaster by leveraging EV batteries to operate elevator
- Simplify inspection work of maintenance staff

(1) 3-phase H-PCS can directly connect to the switchboard (no transformer required)
(2) When blackout happens, after specific safety inspection required by laws are complete, elevator can be operated by using the power discharged from EV
(3) In case PV panel, battery (13kwh) is connected to H-PCS, elevator also can be operated even though EV/PHEV is not connected

* operation test for (1)~(3) is required
3-12. Resilience Solutions: Fleet electrification for disaster

EV fleet platform by communities/companies

- Secure power for the most required equipment at the time of disaster/blackout by fleet electrification (switch corporate car to EV/PHEV)
- Secure power not only for the company itself but also provide power for communities with movable batteries

Secure power supply during disaster

- **Power optimization by coordination of BEMS and PV**
 - Optimization of fleet and office energy utilization during normal times
 - EV fleet platform can provide:
 - Optimization of fleet operation by using telematics/car sharing
 - Control of EV charge/discharge by coordinating EV fleet parked at office depot and BEMS (optimization of distributed generation)
Dr. Kado

Y-type router will be the key device for DC micro grid near future
4. Triple-Active-Bridge (TAB) Converter for Autonomously Distributed Power Network

Three-way isolated DC/DC converter

DC 400V, 10 kW

Decoupling power flow control

Step responses of DC currents I_2 and I_3 when the command value of DC current I_2^* was changed from 2.5 A to 12.5 A in step and I_3^* was fixed to 2.5 A.
5. Autonomously Distributed Network Testbed

- Charging function compatible with electric vehicles from all over the world
- Reliable and resilient DC power supply to edge servers
- "Plug In and Play" function without disrupting the power supply to the loads such as edge servers
- Redefining its mission against disaster
Thank you

For more information on Maui demonstrations:

- EPRI Smart Grid Demonstration Assessment Report
 https://www.epri.com/#/pages/product/000000003002007129/

- NEDO Case Study Report
 http://www.nedo.go.jp/english/reports_20130222.html#hawaii

Hitachi, Ltd.